Padé-Type Model Reduction of Second-Order and Higher-Order Linear Dynamical Systems
نویسنده
چکیده
A standard approach to reduced-order modeling of higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for reduced-order modeling of first-order systems. While this approach results in reduced-order models that are characterized as Padé-type or even true Padé approximants of the system’s transfer function, in general, these models do not preserve the form of the original higher-order system. In this paper, we present a new approach to reduced-order modeling of higher-order systems based on projections onto suitably partitioned Krylov basis matrices that are obtained by applying Krylov-subspace techniques to an equivalent first-order system. We show that the resulting reduced-order models preserve the form of the original higher-order system. While the resulting reduced-order models are no longer optimal in the Padé sense, we show that they still satisfy a Padé-type approximation property. We also introduce the notion of Hermitian higher-order linear dynamical systems, and we establish an enhanced Padé-type approximation property in the Hermitian case.
منابع مشابه
On Padé-type model order reduction of J-Hermitian linear dynamical systems ⋆
A simple, yet powerful approach to model order reduction of large-scale linear dynamical systems is to employ projection onto block Krylov subspaces. The transfer functions of the resulting reduced-order models of such projection methods can be characterized as Padé-type approximants of the transfer function of the original large-scale system. If the original system exhibits certain symmetries,...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملMoment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces
Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...
متن کاملOn dominant poles and model reduction of second order time-delay systems
The method known as the dominant pole algorithm (DPA) has previously been successfully used in combination with model order reduction techniques to approximate standard linear time-invariant dynamical systems and second order dynamical systems. In this paper, we show how this approach can be adapted to a class of second order delay systems, which are large scale nonlinear problems whose transfe...
متن کاملKrylov Subspaces Associated with Higher-order Linear Dynamical Systems
A standard approach to model reduction of large-scale higher-order linear dynamical systems is to rewrite the system as an equivalent first-order system and then employ Krylov-subspace techniques for model reduction of first-order systems. This paper presents some results about the structure of the block-Krylov subspaces induced by the matrices of such equivalent first-order formulations of hig...
متن کامل